Slow Math Takes … Patience

From my husband’s Advent 3 sermon Something on Patience and Joy:

… We might lift up the teacher as an example of patience. A good teacher knows that finally you just can’t impose the answer in a student’s brain as much as you might want to. You have to wait for that student to do that work herself, or not. This is tough, tough work, but finally, there can be no hostile takeover of the mind and will of a student. Learning is voluntary; it’s not mandatory. You have a classroom discussion, and you hear a “wrong-headed answer” (Kenneson). You want to jump in and fix it. But you might kill the thing that is fermenting there if you rush it. You cannot take over that process. You can only make the invitation, and then wait to see if the student will do the work and make her own connections. Teaching takes patience, or it’s not teaching …

Slow Math is … Slow Conversations

At the beginning of our polygons unit, students played a round of hexagons polygraph in Desmos. One student is the picker and another is the guesser. The picker selects a hexagon, and the guesser asks yes or no questions to determine which one was selected.

1 Screen Shot 2016-11-04 at 5.59.42 AM.png

Let’s take a look at a round between SO and SA. SO selected a hexagon. SA asked:

2 Screen Shot 2016-11-16 at 5.55.55 PM.png

SO answered no.

SA eliminated one.

2a Screen Shot 2016-11-16 at 6.00.21 PM.png3 Screen Shot 2016-11-16 at 5.56.08 PM.png

SO answered no.

3a Screen Shot 2016-11-16 at 6.00.30 PM.png

SA eliminated two.

4 Screen Shot 2016-11-16 at 5.56.14 PM.png

SO answered no.

4a Screen Shot 2016-11-16 at 6.00.38 PM.png

SA eliminated three more.

5 Screen Shot 2016-11-04 at 5.52.54 AM.png

SO answered no, and SA eliminated all but one.

5a Screen Shot 2016-11-16 at 6.00.46 PM.png

What a great way for students to learn how to practice MP6: attend to precision. In a whole class discussion, we talked about what it meant for a polygon to be regular. We talked about convex and concave. We talked about symmetry. It turns out that the hexagon SO chose actually does have rotational symmetry – it just didn’t have line symmetry like the rest. My students and I have so many opportunities to learn from each other when we take time to slow down, share our thinking, and listen to other’s thinking.

After a round of Polygraph last year, one student reflected that he learned that he could ask questions to find an answer.

Beautiful Questions.png

Which has me thinking more about Slow Conversations. The Polygraph practice round celebrates the beauty and diversity of all of our students.

Screen Shot 2016-11-14 at 12.31.14 PM.png

How might we teach our students to embrace that diversity by not only asking questions to identify and learn about each other’s uniqueness but also listening to each other’s responses? That’s where Slow Math intersects with Slow Conversations.

Slow Math is … asking questions

I often wonder what we would include in a Slow Math manifesto.

Slow Math is about asking questions. #AskDontTell is one hashtag I regularly use that describes my teaching. But how often does my perspective make me think more about the questions I ask than the questions my students ask?

e e cummings wrote,

always the beautiful answer

who asks a more beautiful question

In “A More Beautiful Question”, Warren Berger tries to figure out why children start school asking hundreds of questions a day but then their questioning “falls off a cliff” as they go through school.

In a Slow Math classroom, questions are not only welcomed – they are sought.